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Abstract: Highly efficient, biocompatible, and fast nucleic acid delivery methods are essential for 

biomedical applications and research. At present, two main strategies are used to this end. In non-

viral transfection liposome- or polymer-based formulations are used to transfer cargo into cells via 

endocytosis, whereas viral carriers enable direct nucleic acid delivery into the cell cytoplasm. Here, 

we introduce a new generation of liposomes for nucleic acid delivery, which immediately fuse with 

the cellular plasma membrane upon contact to transfer the functional nucleic acid directly into the 

cell cytoplasm. For maximum fusion efficiency combined with high cargo transfer, nucleic acids had 

to be complexed and partially neutralized before incorporation into fusogenic liposomes. Among 

the various neutralization agents tested, small, linear, and positively charged polymers yielded the 

best complex properties. Systematic variation of liposomal composition and nucleic acid 

complexation identified surface charge as well as particle size as essential parameters for cargo-

liposome interaction and subsequent fusion induction. Optimized protocols were tested for the 

efficient transfer of different kinds of nucleic acids like plasmid DNA, messenger RNA, and short-

interfering RNA into various mammalian cells in culture and into primary tissues. 

Keywords: fusogenic liposomes, transfection, nucleic acid complexation, membrane fusion 

 

1. Introduction 

During the last decades, numerous nucleic acid transfer methods for in vitro as well as in vivo 

purposes have been reported. However, a universally applicable transfection strategy that combines 

high bioavailability, low toxicity, and highest transfer efficiency has yet to be developed. In general, 

there are two main routes toward transfection: the chemical route based on nanoparticles or 

liposomal- and polymer-based formulations [1–5], and the viral route, where the viral envelope 

serves as carrier vehicle [6,7]. 

Most frequently used for in vitro applications are liposomal or polymer formulations due to easy 

handling. The classical liposomal formulation containing an equimolar mixture of a neutral and a 

positively charged lipid, e.g., DOPE/DOTAP, had already been introduced in the 1980s. However, in 

these lipofection methods, all nucleic acid transfer complexes are taken up via endocytosis [8–10] and 

are therefore destined to undergo lysosomal degradation [10,11]. To bypass this undesired process, 

so-called multi-component lipoplexes have been developed. Compared to the original system, they 

show 10 to 100 times higher DNA transfer efficiencies and use strategies like endosomal 

destabilization [11–14] or pH-adaptation using polymers with proton sponge buffering properties 

[15]. Additionally, nucleic acid protection strategies also become more and more popular. In this 

respect, co-incubation of liposome/DNA complexes with albumin, chitosan, or protamine not only 

reduced degradation but also enhanced DNA transfer efficiency [14,16–19]. Especially for in vivo 
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applications, various types of nanoparticles have also been developed to stabilize and protect nucleic 

acids and to facilitate cell type-specific targeting [20]. 

Common drawbacks of liposome- or polymer-based transfection methods are sometimes low 

transfer rates [21,22] combined with significant cytotoxicity [23,24]. Both limitations are caused by 

the underlying uptake pathway via endocytosis. Beside pronounced variations in endocytic activity 

between different cell types and during the cell cycle [25], on their way to degradation, endosome 

encapsulated nucleic acids are prone to be targeted by pattern recognition receptors. These receptor 

types are highly enriched in endosomal structures. As part of cellular protection systems against 

viruses and bacteria, they initiate inflammatory pathways [26–28] and, ultimately, apoptosis [29]. To 

bypass such endosome-related protection mechanisms, various viruses transfer their nucleic acid 

directly into the cytoplasm via receptor-induced fusion with the plasma membrane of mammalian 

cells. Commercially available viral transfer systems are typically highly efficient. However, most 

systems go along with increased biosafety requirements, high prices, and limitations in nucleic acid 

sizes that can be packed into the viral particles [30,31]. 

Recently, we developed liposomal formulations with fusogenic capacity. These particles, called 

fusogenic liposomes (FLs), are formed from a mixture of neutral and cationic lipids with a small 

admixture of lipid analogs that contain a delocalized π-electron system [32]. They fuse with the 

plasma membrane of living cells with extraordinarily high efficiency without the need for viral 

peptides or other fusion-inducing proteins [33,34]. Such FLs were already used to transfer various 

biological macromolecules like lipids [33], proteins [35], and polyphenols [32] as well as synthetic 

beads [36]. Depending on their chemical characteristics, cargos are either transported directly into 

the cell cytoplasm [35] or intercalated into the plasma membrane [37]. 

Since electrostatic interactions between the positively charged FLs and the negatively charged 

cell surface support fusion, cargos that neutralize liposomal charge hamper fusion. This is because 

negatively charged cargos will efficiently interact with fusogenic liposomes and thereby reduce 

attractive interactions of the liposomes to the cell surface. On the other hand, positively charged 

cargos might barely interact with the liposomal formulation, making their transfer largely inefficient. 

Indeed, we found that direct incubation of FLs and negatively charged nucleic acids blocked fusion 

with mammalian plasma membranes. To eliminate this effect, we systematically varied complexation 

conditions to partially neutralize nucleic acids. Various protein and polymer-based neutralization 

reagents (NRs) have been analyzed, and optimal ratios of such reagents with every type of nucleic 

acids (NA, specifically, DNA, mRNA, siRNA) were identified. By further systematic variation of 

liposome composition, we ultimately identified optimum conditions for membrane fusion and thus 

the direct transfer of nucleic acids into the cell cytoplasm. Parallel analyses of the system optimized 

here, which was then named Fuse-It-mRNA, on cell toxicity and potential uptake routes could clearly 

show unaffected fusogeneity and nucleic acid transfer efficiency in the presence of endosomal 

blockers and proved high biocompatibility in short-term and long-term cell functional analyses [38]. 

2. Results 

2.1. Neutralization of Nucleic Acids Is Essential for Their Efficient Transfer by Fusogenic Liposomes 

Fusogenic liposomes (FLs) preferentially transfer neutral and negatively charged molecules into 

mammalian cells [32,33,35,37,39]. The high positive charge of FLs is hereby not only supporting the 

interaction of these molecules but is also responsible for the interaction of cargo loaded FLs with the 

slightly negatively charged surface of plasma membranes [40]. However, direct incubation of FLs 

with varying concentrations of nucleic acids (NAs) always resulted in only low transfer efficiencies, 

although positively charged lipids were described as neutralization reagents (NR) for NA to support 

NA transfer into mammalian cells [2,41,42]. We tentatively traced this finding to charge 

neutralization of the positively charged FL particles (DOPE/DOTAP/DiR, molar ratio 1/1/0.1) by their 

negatively charged cargo (Figure S1). Therefore we tested the pre-incubation of NAs with positively 

charged molecules to enhance transfer efficiency.  
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Choosing protamine as NR, we analyzed the effect of pre-incubation on DNA (eGFP-expression 

plasmid, pDNA), mRNA (eGFP–mRNA), and siRNA (eGFP-silencer-siRNA) species. NR/NA molar 

ratios were varied from 2 to 1000. After incorporation of neutralized NAs and subsequent transfer 

into CHO cells, transfer efficiencies were determined by either measuring the reduction of GFP 

expression in the case of siRNA or by analyzing the number of GFP positive cells after pDNA and 

mRNA transfer, respectively (Figure 1). The data indicate that partial neutralization of NAs strongly 

enhances their transfer by membrane fusion. Interestingly, depending on the nucleic acid type, very 

different NR/NA ratios resulted in the best transfer. 

 

Figure 1. Influence of nucleic acid size on transfer efficiency. Nucleic acids (NA) with different sizes 

(anti-GFP siRNA, mRNA (GFP-mRNA), and GFP-expression plasmid (pDNA)) were complexed with 

the neutralization reagent (NR) protamine before incubation with FLs. Depending on the NR/NA 

molar ratio, NA transfer efficiencies were determined as the number of GFP positive cells after mRNA 

and pDNA transfer. For siRNA, the knockdown efficiency of eGFP–mRNA was determined by qRT–

PCR. Maximum transfer efficiencies were set to 100% for best visibility. Values are given as mean 

with standard deviation of three independent measurements. NR = neutralization reagent; NA = 

nucleic acid. 

When calculating the amount of nucleotide per NR, the optimum amount of NR correlated with 

NA size (see also Table 1) with 4–6 siRNA nucleotides per NR molecule, 20 mRNA nucleotides and 

16 pDNA nucleotides per NR-molecule, respectively. 

Table 1. Neutralization of nucleic acids (NA) with protamine as neutralization reagent (NR). Shown 

are the analyzed NAs, their sizes in nucleotides, the most efficient molar ratios of NR/NA as well as 

the corresponding numbers of nucleotides per NR. 

NA NA Length (Nucleotides) Molar Ratio of NR/NA Nucleotides/NR 

siRNA 20–30 5/1 4–6/1 

mRNA 1000 50/1 20/1 

pDNA 4700 450/1 16/1 

We characterized the underlying mechanism in more detail by zeta potential measurements on 

cargo loaded FLs (DOPE/DOTAP/DiR 1/1/0.1) at various NR/NA ratios. For simplicity reasons and 

strong transfer sensitivity to suboptimal fusion conditions, we focused on GFP-mRNA as NA. Since 

various neutralization agents for NAs are described that differ in charge density and size, we 

compared four positively charged polymers with sizes ranging from 3 kDa (protamine), 5 kDa, and 

25 kDa (unbranched and branched polyethylenimine (PEI)) to 100 kDa (chitosan). While FLs in the 

absence of mRNA exhibited a well-defined zeta potential in the range of 65 mV (Figure S1a), FLs 

incubated with mRNA without previous neutralization showed strongly reduced zeta potentials of 

around 40 mV. Low NR/mRNA molar ratios led to clearly reduced zeta potentials between 34 and 51 

mV in complex with FLs. In contrast, high neutralization ratios resulted in very broad zeta potential 

distributions with several peaks or shoulders (Figure S1c). For all NRs, best mRNA transfer 
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efficiencies were found for FL complexes with the highest zeta potential (Figure 2a), lowest zeta 

potential variance (Figure 2b), minimal complex size (Figure 2c), and smallest size variance (Figure 

2d). Such complexes were most similar to free FLs. Furthermore, such optimal fusion conditions went 

along with strong but still incomplete neutralization of nucleic acids (−5.6 mV at mixing ratio of 50:1), 

as shown for protamine/mRNA complexes in the absence of FLs (Figure S1b). 

 

Figure 2. Influence of neutralization reagents and ratios on liposomal complex charge and size. 

Protamine, linear, and branched PEI and chitosan were tested as NR to efficiently incorporate NA 

into FLs and enable the efficient transfer of mRNA. Zeta potentials (a), variance of zeta potentials (b), 

complex size (c), and variance of complex sizes (d) are the most prominent characteristics that 

influence transfer efficiencies of FLs (e). Highest transfer efficiencies were achieved with maximal 

high zeta potentials at the lowest zeta potential variance in combination with the smallest complex 

sizes and size variances for all four NRs. NR = neutralization reagent; NA = nucleic acid. 

Comparable results were found for all neutralization reagents tested. After incubation with 

eGFP–mRNA at NR/mRNA molar ratios from 0.03 to 100 and subsequent incubation with FLs, 

transfer efficiencies exhibited distinct optimum ratios again. Furthermore, the data argued for a 

decrease of the optimum NR/mRNA ratio with increasing size of the neutralization molecule (Figure 

2b and Table 2). 
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Table 2. Neutralization of mRNA with neutralization reagents (NR). The analyzed NRs, their sizes, 

and the most efficient molar ratios of NR/mRNA (NA) are given. 

NR Size [kDa] NR/NA [mol/mol] 

PEI branched 25 0.4/1 

chitosan 100 0.8/1 

PEI linear 10 10/1 

protamine 3–6 50/1 

For detailed neutralization analysis, twofold concentrations of mRNA were incubated with 

protamine at varying molar ratios (25/1 to 50/1) and subsequently added to identical FL-

concentrations, as indicated above. Protamine was chosen due to its strongest sensitivity in respect 

of transfer efficiency from 10% to around 80% at different ratios (Figure 2e). For all mixtures, we 

characterized FL-sizes and zeta potentials as well as fusion intensities and eGFP–mRNA expression 

levels. The latter two increased monotonically with increasing concentrations of protamine. 

Interestingly, best NR/mRNA ratios for mRNA transfer correlated not only with high zeta potentials 

in the range of 52 mV as shown before but also with small FS/NR/mRNA complex sizes (275 nm; 

Figure 3a). Vice versa, reduced and therefore suboptimal protamine concentrations went along with 

decreasing zeta potentials, enlarged, precipitating fusogenic complexes that were already well visible 

by phase contrast microscopy (see Figure S2) and went along with lowered fusion and mRNA 

transfer efficiencies (Figure 3b,c). 

 

Figure 3. Effects of nucleic acid neutralization on liposomal complex characteristics and cellular 

transfer efficiency. Chinese hamster ovary cells (CHOs) were treated with FLs loaded with twofold 

eGFP–mRNA amounts previously neutralized with different amounts of protamine as NR to enhance 

the size effect of the protamine-neutralized mRNA complexes. Particle size and zeta potential were 

determined by dynamic and electrophoretic light scattering, respectively (a), and are well comparable 

to the corresponding ratios given in Figure 2. Fusion intensity as well as protein expressions (eGFP) 

were quantified by flow cytometry (b) and visualized by confocal microscopy recording the 

fluorescence emission of the membrane tracer DiR (red) and eGFP (green) (c). Values are given as 

mean with standard deviation of three independent measurements. Scale bar, 250 µm. NR = 

neutralization reagent. 
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Since NA neutralization by protamine had pronounced effects on liposome size and function, 

we explored these correlations by changing the pH-value of the NR buffer and, therefore, protamine 

charge (protamine isoelectric point around pH 12) without altering overall system composition and 

NR/mRNA ratio (constant at 50/1). Data show that protamine at lowered pH-values (pH 8 instead of 

pH 11) had similar effects as reduced NR/mRNA ratios with significantly lower zeta potentials, 

enhanced FS/NR/mRNA complex size, and impaired fusion and mRNA transfer efficiency (Table 3). 

Table 3. Effect of pH on NR/NA/FL (neutralization reagent/nucleic acid/fusogenic liposome)-complex 

characteristics. Shown are the zeta potentials, the sizes of the protamine/eGFP–mRNA/FL complexes 

at two different pH values, as well as the resulting fusion and transfer efficiencies after treatment of 

Chinese hamster ovary (CHO) cells. Values are given as mean with standard deviation (s.d.) of six 

(zeta potential), respectively, five (size) measurements. All values for pH 8 and pH 11 are significantly 

different. 

pH of NR 

Buffer 

Zeta Potential 

± s.d. (mV) 

Size ± s.d. 

(nm) 

eGFP Transfer 

Efficiency ± s.d. (%) 

eGFP Fluorescence 

Intensity ± s.d. (counts) 

11 60.5 ± 0.3 141.5 ± 36 54 ± 7 475 ± 117 

8 54.5 ± 3 344.8± 20 46 ± 3 230 ± 88 

2.2. Effect of the Liposomal Formulation on Nucleic Acid Transfer Efficiency 

As demonstrated before, fusion efficiency is strongly dependent on the chemical nature and 

mixing ratio of FL–lipid components [43]. To elucidate the impact of liposomal composition on 

nucleic acid transfer, we first tested if removal of the fusion inducing lipid analog DiR would also 

influence nucleic acid transfer after complexation with protamine (NR/NA 50/1). All investigations 

were continued with mRNA as NA due to its highest transfer sensitivity to suboptimal fusion 

conditions. Results show that liposomal formulations with DOPE and DOTAP (1/1) were barely able 

to transfer eGFP–mRNA into cells with efficiencies below 20% as compared to 80% in the presence of 

DiR based on flow cytometry measurements (Figure 4a,b). 

In the next step, we replaced DOTAP in our optimal standard formulation (DOPE/DOTAP/DiR, 

1/1/0.1) by MVL-5. This multivalent cationic lipid contains five positive charges on its head group 

instead of only one for DOTAP. For optimal comparison, we kept once the lipid molar ratio (1/1/0.1) 

and once the calculated net surface charge (1/0.2/0.1) constant. With similar surface charge densities 

of MVL-5 liposomes (1/0.2/0.1), mRNA transfer was well possible with efficiencies in the 70% range. 

Although efficiencies were high, fusion intensities were reduced, and eGFP transfer efficiencies 

showed higher variabilities compared to DOPE/DOTAP/DIR preparations. These transfer and fusion 

efficiencies correlated with lowered zeta potentials in the range of 56 mV (Figure 4a). Interestingly, 

elevated MVL-5 concentrations (1/1/0.1) inhibited liposomal fusogeneity. This effect went along with 

low mRNA transfer, although zeta potentials were even slightly higher than those of standard, 

DOTAP-containing FLs (Figure 4a,b).  

Additionally, the neutral lipid DOPE of FLs was exchanged by DOPC. This exchange was 

described to abolish liposomal fusogeneity [43] and reduced the zeta potential of liposomes after 

incubation with NR/NA complexes to 51 mV. Furthermore, fusion events after contact with CHO 

cells were not detectable, and eGFP expression levels were down to just 4% (Figure 4a,b). Live-cell 

microscopy analyses indicated that in the presence of NR/NA complexes, only DOPE/DOTAP/DiR 

(1/1/0.1) and DOPE/MVL-5/DiR (1/0.2/0.1) liposomes were fusogenic, while all other formulations 

were mainly taken up by endocytosis (supplementary movie M1). 
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Figure 4. Influence of liposomal formulation on membrane fusion and nucleic acid transfer 

efficiencies. The liposomal formulations DOPE/DOTAP/DIR (mixing ratio 1/1/0.1) (1), DOPE/MVL-

5/DIR (1/0.2/0.1 and 1/1/0.1) (2 and 5), DOPE/DOTAP (1/1) (3), and DOPC/DOTAP/DiR (1/1/0.1) (4) 

were used to deliver eGFP–mRNA into CHO cells. Protamine was used as a neutralization reagent. 

The average zeta potential of liposomes in complex with partially neutralized nucleic acid (see also 

table S1) and subsequent eGFP–mRNA transfer efficiency are shown as mean with s.d. of three 

independent measurements (a). Fluorescence micrographs of CHO cells 24 h after treatment with the 

same complexes were recorded to monitor membrane fusion (DiR) and eGFP transfer efficiencies 

(eGFP), respectively (b). Scale bar 200 µm. 

2.3. Quantification of mRNA Transfer on Single Cell Level 

To further characterize fusion-dependent nucleic acid transfer, we estimated the effective 

number of NR/NA-loaded liposomes that fused with nHEK cells. Based on average gray values of 

physisorbed DOPE/DOTAP/DiR (1/1/0.1) fusogenic liposomes that were complexed with protamine 

as NR and eGFP–mRNA as NA (50/1 ratio) and summed gray values per nHEK cell after fusion with 

such liposomes, we calculated 1700 (s.d. 700) fusion events per cell within 10 min (Figure 5).  

In addition, the mRNA amount transferred into the cell cytoplasm was determined by qRT–PCR 

to be 105 mRNA molecules per cell after 10 min of fusion. Our results showed that 0.5% of the total 

mRNA quantity was transferred into cells via fusion. As control formulation, the classical transfection 

reagent Lipofectamine MessengerMax was used to transfer the same mRNA into nHEK cells by 

endocytosis. Here we found that only half the amount (0.25% of the total mRNA) was successfully 

internalized into nHEK cells, although incubation time was already prolonged to 30 min compared 

to 10 min for fusion. 
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Figure 5. Schematic overview of the membrane fusion events quantification. The fluorescence signal 

of mRNA loaded FLs adsorbed on glass was recorded in 3D in the red channel (DiR) (a1). Gray values 

of the z-stacks were summed up for each individual liposome (b1). In addition, a mean gray value of 

all detected liposomes was calculated (c1). Subsequently, nHEK cells, previously treated with 

protamine/eGFP–mRNA/FL complexes, were imaged in 3D (a2), and gray values of the z-stacks were 

summed up for each single cell (b2). Liposomal gray values were analyzed in 12 independent 

measurements with 900 liposomes in total and compared with mean gray values of 15 cells. Using the 

values calculated in (c1) and (b2), the total number of liposomes fused with a single nHEK cell was 

calculated (d). FL = fusogenic liposome. 

2.4. mRNA Delivery Into Primary Cortical Neurons and Freshly Isolated Neural Tissue 

Most NA transfer reagents exhibit reduced efficiencies when used on primary cells [44]. Efficient 

transfer into primary tissue is even more challenging, and viral transduction was described as likely 

the only method that results in sufficient transfer of nucleic acids [45]. To test if similar effects would 

also occur for fusion dependent NA transfer, DOPE/DOTAP/DiR (1/1/0.1) fusogenic liposomes were 

used to transfer protamine neutralized eGFP–mRNA (50/1 ratio) into freshly isolated cortical neurons 

from rat embryos. mRNA was chosen due to its tremendous medical potential and fast readout ability 

that allow short incubation times of isolated tissues before analysis. 

As shown in Figure 6a, FL/NR/NA complexes were highly fusogenic also on these primary cells. 

Furthermore, fusion resulted in the efficient transfer of eGFP–mRNA and GFP signals that were 

detectable for more than 1 week after treatment. Fusion visibly changed neither cell morphology nor 

cell viability and allowed normal neurite outgrowth and neuronal network formation.  

Additionally, we treated freshly isolated rat embryonic cortical tissue with the same FL/NR/NA 

complexes and observed comparably high eGFP–mRNA transfer efficiencies 24 h after fusion (Figure 

6b). As in the case of cell lines, cell morphology was visibly unaltered.  
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Figure 6. eGFP–mRNA transfer into primary neuronal cells and primary cortical tissue using FLs. 

Fluorescence and phase contrast micrographs of primary rat cortical neurons six days after treatment 

with protamine/eGFP–mRNA/FLs (a). 3D reconstruction of rat embryonic cortex based on eGFP 

fluorescence. eGFP–mRNA was delivered by FLs 6 days before analysis (b). Scale bars 200 µm. 

3. Discussion 

Transfer of NAs into mammalian cells is a well-established technique in medical and 

pharmaceutical research. However, spontaneous incorporation of NAs is hampered by the repulsive 

electrostatic forces acting between the negatively charged NA molecules and the also negatively 

charged glycocalyx on the cell surface. Therefore, NA neutralization strategies have been applied 

frequently to enhance NA internalization efficiency [46–48]. For this purpose, nucleic acids are 

typically complexed by positively charged peptides [16,49–51], synthetic polymers [18,19,52,53], or 

cationic liposomes [41,46,54] as neutralization reagent. NR and NA interaction switches the net 

complex charge from negative to positive, enabling an attractive interaction with the cell surface, and, 

consequently, their cellular uptake [52]. 

Our experiments showed complexation of NA with FLs in the absence of NR, albeit, NA transfer 

efficiency remained very low. We hypothesized that the strong electrostatic interactions between NA 

and FL blocked efficient interaction between FLs and cell surfaces and therefore impaired NA transfer 

into the cytoplasm. To overcome this barrier, we characterized a new delivery strategy by pre-

incubation of NA with another positively charged molecule before incorporating them into FLs. 

Applying this method, NA/NR complexes served as cargo and FLs as delivery vehicles. As already 

clearly shown for FLs in the absence of NR molecules and NAs [34,55], parallel experiments on 

NA/NR/FL complexes also proved fusion-based transfer and high biocompatibility [38]. Underlying 

liposomes (there named Fuse-It-mRNA) had the identical composition as characterized here as 

optimum (DOPE/DOTAP/DiR 1/1/0.1) and were unaffected in effectiveness by various endosomal 

uptake blockers while keeping natural cell functions of various cell types completely unaffected. 

For optimal results, a precisely adjusted charge balance between the components NA, NR, and 

FLs plays a crucial role in homogenous complex formation and subsequent efficient cargo delivery 

(Table 1). Furthermore, large neutralization reagents like chitosan or branched PEI are able to reduce 
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the negative charge of nucleic acids more effectively than small peptides like protamine, or linear 

PEI; therefore, less reagent is needed for the best complex formation (Table 2). Interestingly, other 

transfer methods that apply cationic polymers for NA neutralization usually need the polymer in 

high excess [8,21] to completely compensate or even revert the negative charge of NA. Rettig et al. 

exemplarily demonstrated that molar ratios of NR (protamine)/mRNA of around 400/1 resulted in 

best endosomal-dependent NA transfer efficiencies [56]. While similar ratios were found here for 

fusion-driven pDNA transfer, lower ratios were identified for mRNA (50/1) and siRNA (5/1) that 

furthermore resulted in just partial neutralization (Table 1). Although reduced ratios for RNA species 

can be explained by smaller molecule sizes and higher flexibilities to some extent [57,58], also the 

different type of incorporation mechanisms most likely plays an important role. This is because 

endosomal uptake is barely affected by molecule charge, and efficient neutralization of NA and high 

excess of NR is necessary to allow for cell surface interaction [8,18,21,59]. In contrast, for fusion driven 

NA transfer, NR/NA interaction with FL as well as FL/NR/NA contact to the plasma membrane are 

largely dependent on electrostatic interactions, as also shown for FL dependent protein transfer [35]. 

Our results indicate (Figures 2 and 3) that high excess of protamine impairs interaction of NR/NA to 

FL and absence or just low amounts of protamine inhibit FL fusogeneity. In between these opposing 

conditions for RNA delivery, a maximum occurs. At this optimum, NAs are still just partially 

neutralized to further enable the interaction with FLs (see Figure S1b), and the resulting cargo loaded 

FLs show zeta potentials of 40–45 mV whereas bare FLs typically exhibit values in the range of 60–65 

mV. 

As described in literature, FL composition strongly influences fusogeneity [43]. In line with this, 

we identified FLs formed from the lipid mixture of (DOPE/DOTAP/DiR 1/1/0.1) as an optimum 

vehicle for RNA transfer. Moreover, in agreement with literature [34,43], liposomes lacking the 

aromatic lipid analog DiR or containing a phosphocholine lipid instead of phosphoethanolamine 

were non-fusogenic. This loss of function went along with low NA transfer efficiencies, indicating 

that the alternative endosomal uptake routes are of negligible efficiency. This was also proven by 

unaffected transfer efficiencies for the optimized system identified here upon the use of different 

endocytosis blockers [38]. Notably, when the cationic lipid DOTAP was replaced at a 1/1 ratio by 

MVL-5, liposomal delivery capacity drastically decreased as well, although FL zeta potential 

remained highly positive with values close to 55 mV. 

As proposed by Kolasinac et al., not only the charge but also the shape of lipid molecules forming 

FLs might play a crucial role in fusion [43]. Here, the excess of molecules with inverted conical (MVL-

5) or cylindrical shape (DOPC) seems to interfere with phase behavior and drastically reduced 

liposomal fusion ability. Reduction of MVL-5 concentration in the membrane by 80% (zeta potential 

51 mV) reduced the total number of positive surface charges to values found for classical DOTAP 

containing FL (zeta potential of 58 mV) and, intriguingly, resulted again in high mRNA transfer 

efficiency (70%). Interestingly, fusion efficiency largely depends on high concentrations of DOTAP. 

While concentrations of 25% and lower massively impair fusogeneity, concentrations above 50% 

continuously result in high fusion efficiencies of 75% and more. Furthermore, cell culture 

experiments indicate that the transfer of such high concentrations of positively charged lipids by 

fusion does not induce cytotoxic effects [33] as typically found for other systems [60]. As described 

by Chernomordik and Kozlov, membrane fusion intermediate states require membrane leaflets with 

slightly negative curvatures. Lipids like DOTAP or DOPE with conical effective shapes tend to form 

such surfaces, while molecules with cylindrical or inverted conical shapes build membranes with 

positive curvatures [61]. In these cases, hemi-fusion pore formation, as a fusion intermediate state, is 

not favored energetically, and, therefore, fusion processes might be inhibited. This scenario is 

seemingly questioned by our results on the cationic lipid MLV-5. Even though it exhibits conical 

shape, FLs formed from a lipid mixture containing 15% (mol/mol) MVL-5 exhibit very high fusion 

efficiency. Presumably, at such low concentrations, the molecular shape of the majority molecule 

DOPE (inverted conical) dominates phase behavior. 

All effects described above allow efficient interaction of NR/NA treated FL with the cellular 

plasma membrane and, as a consequence, the fusion of more than 1500 liposomal complexes per cell 
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within 10 min. Such numbers are significantly higher than those described for endocytosis-dependent 

processes with 1400 complexes interacting with the plasma membranes within 30 min and uptake of 

850 complexes within this time [21]. However, fusion events per time calculated here are subject to a 

large uncertainty. This is because we cannot exclude fluorescent quenching effects [62,63] due to 

strongly differing fluorophore concentrations in FLs and plasma membranes after fusion. 

Additionally, putative differences in FL size distribution or complexation status that preferably bind 

to planar surfaces or are able to fuse with cellular membranes have been neglected. Nevertheless, 

while endosomal uptake rates seem to vary tremendously between different cells [21], data presented 

earlier indicate that due to mainly physicochemically driven underlying processes, fusion efficiency 

is largely independent on cell type [38]. 

Most importantly, high fusion rates went along with efficient NA transfer. These results indicate 

that most FL incorporated NR/NA complexes without losing their fusogenic potential. In the end, 

with approximately 105 molecules, 0.5% of the applied mRNA amount have been transferred by 

fusion within 10 min. This amount is twice as high as what we and other groups could achieve with 

classical endosomal based transfection reagents at best conditions. Batard et al., for example, detected 

an NA uptake of 105 molecules within 8 h using cationic endocytic liposomes, while 30 times more 

NA molecules were internalized within half the time using the same liposomes in the presence of 

calcium phosphate salt [64]. 

A remarkable result of this efficient, fusion-based NA incorporation directly into the cytoplasm 

is an unusually fast appearance of detectable protein amounts. For GFP–mRNA, first protein signals 

were already well detectable 1 h after fusion (see also [38]), while for classical lipid- or polymer-based 

transfection reagents, this takes several hours [65]. This makes fusion a versatile alternative to 

classical transfection reagents with high functionality in cell culture as well as tissue samples using 

identical fusion parameters. Further experiments will show if similar results can be achieved upon in 

vivo use. 

4. Materials and Methods 

4.1. Cell Culture 

Chinese hamster ovary cells (CHO-K1) (ATTC, Manassas, VA, USA) and normal human 

epidermal keratinocytes (nHEKs) (Cell Systems, Troisdorf, Germany) were used to analyze nucleic 

acid delivery efficiencies by FLs. Before treatment, CHO-K1 cells were maintained in DMEM-F12 

culture medium (Sigma-Aldrich, Darmstadt, Germany) supplemented with 10% fetal bovine serum 

and a 1/100 dilution of an antibiotic solution (10,000 units penicillin and 10 mg/mL streptomycin in 

0.9% NaCl, (Sigma-Aldrich Darmstadt, Germany)). nHEK cells were cultured in DermaLife® K 

Keratinocyte Culture medium (CellSystems, Troisdorf, Germany) with manufacturer's supplements 

lacking tumor necrosis factor (TNF). For experiments on cortical neurons, cells were isolated from rat 

embryos and cultured as described previously [66]. All cells were continuously kept at 37 °C and 5% 

CO2 in a humidified atmosphere. Cell confluence was kept below 80%. Then, 24 h before fusion 

60,000 cells were seeded on fibronectin (BD Biosciences, San José, CA, USA) coated Petri dishes (Ø = 

3.5 cm) (20 μg/mL fibronectin (BD bioscience) for 30 min at 37 °C) and cultivated. 

4.2. Preparation of Liposomes 

The neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC), and the cationic lipids 1,2-dioleoyl-3-trimethylammonium-

propane (DOTAP), and N1-[2-((1S)-1-[(3-aminopropyl)amino]-4-[di(3-amino-

propyl)amino]butylcarboxamido)ethyl]-3,4-di[oleyloxy]-benzamide (MVL-5) were purchased from 

Avanti Polar Lipids, Inc. (Alabaster, AL, USA). The fluorescent lipid analog DiR (1,1'-dioctadecyl-

3,3,3',3'-tetramethylindotricarbocyanine iodide) was ordered from Thermo Scientific (Waltham, MA, 

USA). The lipid components were homogeneously mixed with the lipid analog in chloroform at a 

molar ratio of DOPE (DOPC) / DOTAP (MVL-5) / DiR of 1/1/0.1 (mol/mol). Where indicated a molar 

ratio of 1/0.2/0.1 was used. For control samples, only the neutral and the cationic lipids without DiR 
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were used at the same ratios. After component mixing, chloroform was evaporated at reduced 

pressure for 0.5 h. Subsequently, dried lipid films were dispersed in 20 mM 2-(4-(2-hydroxyethyl)-1-

piperazinyl)-ethansulfonic acid (HEPES) buffer (pH 7.4) to a final lipid concentration of 2 mg/mL. 

These suspensions were vortexed for approximately 1–2 min and additionally homogenized in a 

standard ultrasonic bath for 10–20 min at 4 °C. Liposome stock solutions were stored at 4 °C until 

usage. 

4.3. Preparation of Neutralization Reagents (NR) 

Protamine (grade IV, Sigma Aldrich, Darmstadt, Germany), linear (product number 764582, 

Sigma Aldrich) and branched (product number 408727, Sigma Aldrich) polyethyleneimine (PEI) 

(Sigma Aldrich), and chitosan (100 kDa, Sigma Aldrich) were used as neutralization and 

complexation reagents for nucleic acids. Neutralization reagents (NRs) were dissolved in ultrapure 

water or in 0.2 M sodium acetate buffer pH 4.5 (chitosan) at a concentration of 1 mg/mL. In one 

experimental setup, the effect of reduced pH-values of the protamine containing NR reagent was 

analyzed by acidifying the solution with CO2 for 10 min at RT to result in a decreased pH-value from 

naturally pH 11 to pH 8. 

4.4. Preparation of Nucleic Acid Containing Fusogenic Liposomes 

Before experiments, liposomes were vortexed and homogenized by ultrasonication for 10 min 

at 4 °C. In parallel, 1 µg mRNA (eGFP mRNA, TriLink USA) or alternatively 30 pmol siRNA (eGFP 

silencer siRNA; Thermo Scientific) or 2 µg plasmid DNA (eGFP plasmid; BD Bioscience) were 

incubated with indicated amounts of NR (protamine, linear or branched PEI, and chitosan) for 10 min 

at RT in a total volume of 3–6 µL. Subsequently, neutralized nucleic acids were mixed with 2.5 µL of 

FLs and homogenized in an ultra-sonication bath for 5 min below RT in a total volume of 5.5–8.5 µL. 

Before cell treatment, solutions were diluted with 250 µL of PBS (137 mM NaCl, 6.2 mM Na2HPO3, 

1.5 mM KH2PO4, pH 7.4) and sonicated for 2 min at 4 °C. Cells were incubated with NA/NR/FLs 

complexes for 5–15 min at 37 °C. After treatment, the liposomal solution was replaced by cell culture 

medium. 

4.5. Quantification of Knock Down Efficiency of Transiently Expressed eGFP 

For quantification of siRNA transfer efficiencies, CHOK1 cells were transfected with 1 µg of 

eGFP plasmid using Lipofectamine2000 reagent one h before siRNA transfer via FLs. Fusion was 

performed for 10 min as described above, using 30 pmol Ambion eGFP silencer siRNA (Thermo 

Fisher Scientific, Waltham, MA, USA). eGFP protein levels were quantified by flow cytometry (see 

below) 24 h after siRNA treatment. 

4.6. mRNA Transfer Into Isolated Cortical Brain Tissue 

Cortical tissue was isolated from 19-day-old Wistar rat embryos by dissection as described 

before [66] and subsequently fused with the following complex: 2 µg eGFP–mRNA, 1 µg protamine, 

2.5 µL FLs, and 250 µL PBS for 30 min at 37 °C. Complex preparation was performed as described 

above. After fusion, the solution was replaced by prewarmed neurobasal media (Thermo Fisher 

Scientific, Waltham, MA, USA), supplemented with GlutaMAX (Thermo Fisher Scientific, Waltham, 

MA, USA), B-27 (Thermo Fisher Scientific, Waltham, MA, USA), and gentamicin (Sigma, Taufkirchen, 

Germany) and tissue fragments were cultured for 4–6 days at 37 °C and 5% CO2 containing, 

humidified atmosphere. The experiments were approved by the local ethics committee (animal 

testing permission No. 84-02.04.2015.A173 (Landesamt für Natur, Umwelt und Verbraucherschutz 

NRW)). For 3D image reconstruction of eGFP-expressing cortical tissue, the Imaris-software 

(Bitplane, Zurich, Switzerland) was used.  
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4.7. Zeta Potential and Size Distribution Measurements 

Particle size and zeta potential were determined by dynamic and electrophoretic light scattering, 

respectively, using a zetasizer (Nano ZS from Malvern Instruments, Malvern, U.K.) equipped with a 

HeNe laser (633 nm). Scattered laser light was collected at a constant angle of 173°. Prior to 

measurements, NA/NR/FLs complexes were diluted 1/10 for size and 1/100 for zeta potential 

measurements with degassed ultrapure water. All measurements were performed at 20 °C and 

repeated three times at 1 min intervals. Data were collected from three independent samples. Data 

were analyzed by the manufacturer's software. Zeta potential measurements were performed with a 

refractive index of 1.33. Size was determined by intensity. 

4.8. Light Microscopy 

Live cell analyses were performed at 37 °C and 5% CO2 using an inverse confocal laser scanning 

microscope (cLSM 710, Carl Zeiss Micro-Imaging GmbH, Jena, Germany) equipped with an argon 

ion laser (488 nm) and a helium-neon laser (633 nm). eGFP and DiR were detected using appropriate 

filter settings. Depending on experimental needs, one of the following objectives (all Carl Zeiss) was 

used: EC Plan-Apochromat 20×/0.8 Ph2, EC Plan-Neofluar 63×/1.25 Oil Ph3, or EC Plan-Neofluar 

10×/0.30 Ph1. Overview images were recorded in all cases at the center of the substrates. 

4.9. Flow Cytometry 

NA-transfer efficiencies were characterized by flow cytometry (GUAVA 8HT, Merck Millipore, 

Billerica, MA, USA). Prior to analysis, cells were trypsinized (Trypsin–EDTA solution from Sigma-

Aldrich, Darmstadt, Germany) 24 h after NA delivery, resuspended in 200 µL of cell culture medium 

and analyzed without fixation. For each sample, at least 10,000 cells were analyzed for cell 

morphology (granularity and size), fusion efficiency (DiR), and eGFP-expression. Suitable gates were 

chosen in the forward scatter vs. side scatter dot plot. The fluorescence signal of the lipid tracer DiR 

was excited with the 640 nm laser line and collected in the NIR2 channel using a band pass filter BP 

785/70 nm. eGFP signal was excited with the 488 nm laser line and recorded in the green channel 

through the band pass filter BP 525/30 nm. Fusion intensities were determined as mean fluorescence 

intensity over all DiR positive cells. Fusion efficiencies represent the percentage of DiR labeled cells 

of all cells. Transfer efficiencies for mRNA and plasmid DNA (both encoding eGFP) were determined 

as the ratio of eGFP positive cells of all analyzed cells. Flow cytometry thresholds were set based on 

controls and kept stable. siRNA knockdown efficiencies were quantified as the number of eGFP 

positive cells after transient eGFP plasmid transfer in eGFP silencer siRNA treated cells compared to 

cells without siRNA treatment. 

4.10. Quantitative Analysis of Membrane Fusion Events 

The number of fused liposomes per cell was determined from confocal images. To this end, the 

average fluorescence intensity (defined by detected and summed gray values) of fusogenic liposomes 

and the averaged total fluorescence intensity per cell were analyzed after treatment with FLs. 

To determine the average liposomal fluorescence intensity, 2.5 µL of FL solution was diluted 

1:400 in PBS, and 250 µL of the diluted solution was placed on a cover slide for 2 min. This resulted 

in well-separated, physisorbed liposomes on the slide. For each liposome, the overall fluorescence 

intensity was recorded by confocal z-stack imaging (cLSM 710, Carl Zeiss). A manually defined gray 

value was used as a threshold to segment the liposomes. Average intensities were determined in nine 

independent experiments with at least 35 liposomes each, and the ensemble average was determined. 

To quantify liposomal fusion events per cell, freshly FL treated nHEK cells were imaged in 3D 

to visualize the liposomal marker dye DiR. Cell borders were determined and used as masks. Gray 

values within the mask were summed up and are defined as fusion intensities. The total number of 

liposomes fused per cell was subsequently calculated as the ratio of overall fluorescence intensity per 

cell and the average liposomal fluorescence intensity. An analysis was performed on more than 15 

independent cells. Throughout all experiments, microscope setups, as well as substrate conditions, 
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were kept identical. As internal, reliable control, unfused liposomes next to the cells were used and 

showed comparable intensities as identified before for liposomes alone. 

4.11. RNA Isolation and cDNA Synthesis 

For RNA quantification, an RNeasy Plus Mini kit (QIAGEN GmbH, Hilden, Germany) was used 

according to the manufacturer’s recommendations. Isolation was performed 0.5, 6, and 24 h after 

mRNA transfer for quantification of transferred eGFP–mRNA and 24 h for quantification of mRNA 

knockdown in case of siRNA transfers. RNA yields were determined by measuring the absorbance 

of the RNA solution at 260 nm (A260) using an UV/VIS spectrometer (Nanodrop products, 

Wilmington, NC, USA). cDNA synthesis was performed using the QuantiTect Reverse Transcription 

Kit (QIAGEN GmbH, Hilden, Germany). For the quantification of eGFP–mRNA amounts that were 

transferred by fusion, 10 ng eGFP–mRNA was transcribed into cDNA as control for subsequent qRT–

PCR experiments. All substrates were washed three times with PBS before RNA isolation to remove 

not internalized liposome–mRNA complexes from the cell surface.  

4.12. RT-PCR Assays 

Synthesized cDNA was diluted 1/5 in RNAse free water before RT–PCR analysis. Subsequent 

qRT–PCR experiments were performed using an eGFP TaqMan® Assay (Thermo Scientific, 

Waltham, MA, USA) and a TaqMan® master mix. Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) served as internal standard. Analysis was performed with a StepOne™ Real-Time PCR 

System (Thermo Scientific, Waltham, MA, USA) and evaluated by StepOne™ software (version 2.0.2).  

4.13. Statistical Analysis 

Data are given as mean (s.d.). Analysis of variance (ANOVA) was used for multiple 

comparisons. A p-value of 0.05 was considered significant. 

5. Conclusions 

Fusogenic liposomes are highly efficient carriers for transferring any kind of nucleic acid into 

mammalian cells. Based on their high fusion ability with the cellular plasma membrane, they deliver 

nucleic acids directly into the cell cytoplasm. Due to the fast and efficient delivery process and low 

cargo degradation, protein expression can first be observed already 1 h after treatment. High 

biocompatibility and low toxicity, as shown in parallel experiments [38], make the optimized FL 

system developed here a promising candidate for future biomedical and pharmacological 

applications for the transfer of complexed nucleic acids. 
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